Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A millimetric droplet may bounce and self-propel across the surface of a vertically vibrating liquid bath, guided by the slope of its accompanying Faraday wave field. The ‘walker’, consisting of a droplet dressed in a quasi-monochromatic wave form, is a spatially extended object that exhibits many phenomena previously thought exclusive to the quantum realm. While the walker dynamics can be remarkably complex, steady and periodic states arise in which the energy added by the bath vibration necessarily balances that dissipated by viscous effects. The system energetics may then be characterised in terms of the exchange between the bouncing droplet and its guiding or ‘pilot’ wave. We here characterise this energy exchange by means of a theoretical investigation into the dynamics of the pilot-wave system when time-averaged over one bouncing period. Specifically, we derive simple formulae characterising the dependence of the droplet’s gravitational potential energy and wave energy on the droplet speed. Doing so makes clear the partitioning between the gravitational, wave and kinetic energies of walking droplets in a number of steady, periodic and statistically steady dynamical states. We demonstrate that this partitioning depends exclusively on the ratio of the droplet speed to its speed limit.more » « lessFree, publicly-accessible full text available April 10, 2026
-
The relation between de Broglie’s double-solution approach to quantum dynamics and the hydrodynamic pilot-wave system has motivated a number of recent revisitations and extensions of de Broglie’s theory. Building upon these recent developments, we here introduce a rich family of pilot-wave systems, with a view to reformulating and studying de Broglie’s double-solution program in the modern language of classical field theory. Notably, the entire family is local and Lorentz-invariant, follows from a variational principle, and exhibits time-invariant, two-way coupling between particle and pilot-wave field. We first introduce a variational framework for generic pilot-wave systems, including a derivation of particle-wave exchange of Noether currents. We then focus on a particular limit of our system, in which the particle is propelled by the local gradient of its pilot wave. In this case, we see that the Compton-scale oscillations proposed by de Broglie emerge naturally in the form of particle vibrations, and that the vibration modes dynamically adjust to match the Compton frequency in the rest frame of the particle. The underlying field dynamically changes its radiation patterns in order to satisfy the de Broglie relation p=ℏk at the particle’s position, even as the particle momentum p changes. The wave form and frequency thus evolve so as to conform to de Broglie’s harmony of phases, even for unsteady particle motion. We show that the particle is always dressed with a Compton-scale Yukawa wavepacket, independent of its trajectory, and that the associated energy imparts a constant increase to the particle’s inertial mass. Finally, we see that the particle’s wave-induced Compton-scale oscillation gives rise to a classical version of the Heisenberg uncertainty principle.more » « less
-
We report the results of a theoretical investigation of the stability of a hydrodynamic analogue of Landau levels, specifically circular orbits arising when a millimetric droplet self-propels along the surface of a vibrating, rotating liquid bath. Our study elucidates the form of the stability diagram characterising the critical memory at which circular orbits destabilise, and the form of instability. Particular attention is given to rationalising observations reported in prior experimental works, including the prevalence of resonant wobbling instabilities, in which the instability frequency is approximately twice the orbital frequency. We also explore the physical mechanism responsible for the onset of instability. Specifically, we compare the efficacy of different heuristic arguments proposed in prior studies, including propositions that the most unstable orbits arise when their radii correspond to the zeros of Bessel functions or when their associated wave intensity is extremised. We establish a new relation between orbital stability and the mean wave field, which supersedes existing heuristic arguments and suggests a rationale for the alternate wobbling and monotonic instabilities arising at onset as the orbital radius is increased progressively.more » « less
-
Abstract Superradiance occurs in quantum optics when the emission rate of photons from multiple atoms is enhanced by inter-atom interactions. When the distance between two atoms is comparable to the emission wavelength, the atoms become entangled and their emission rate varies sinusoidally with their separation distance due to quantum interference. We here explore a theoretical model of pilot-wave hydrodynamics, wherein droplets self-propel on the surface of a vibrating bath. When a droplet is confined to a pair of hydrodynamic cavities between which it may transition unpredictably, in certain instances the system constitutes a two-level system with well-defined ground and excited states. When two such two-level systems are coupled through an intervening cavity, the probability of transition between states may be enhanced or diminished owing to the wave-mediated influence of its neighbour. Moreover, the tunneling probability varies sinusoidally with the coupling-cavity length. We thus establish a classical analog of quantum superradiance.more » « less
-
We present the results of a theoretical investigation of the stability and collective vibrations of a two-dimensional hydrodynamic lattice comprised of millimetric droplets bouncing on the surface of a vibrating liquid bath. We derive the linearized equations of motion describing the dynamics of a generic Bravais lattice, as encompasses all possible tilings of parallelograms in an infinite plane-filling array. Focusing on square and triangular lattice geometries, we demonstrate that for relatively low driving accelerations of the bath, only a subset of inter-drop spacings exist for which stable lattices may be achieved. The range of stable spacings is prescribed by the structure of the underlying wavefield. As the driving acceleration is increased progressively, the initially stationary lattices destabilize into coherent oscillatory motion. Our analysis yields both the instability threshold and the wavevector and polarization of the most unstable vibrational mode. The non-Markovian nature of the droplet dynamics renders the stability analysis of the hydrodynamic lattice more rich and subtle than that of its solid state counterpart.more » « less
-
null (Ed.)We present the results of a combined experimental and theoretical investigation of the stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath. As the bath's vibrational acceleration is increased progressively, droplet rings are found to destabilize into a rich variety of dynamical states including steady rotational motion, periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability observed is dependent on the ring's initial radius and drop number, and whether the drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational acceleration is further increased, more exotic dynamics emerges, including quasi-periodic motion and rearrangement into regular polygonal structures. Linear stability analysis and simulation of the rings based on the theoretical model of Couchman et al. ( J. Fluid Mech. , vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate that the wave amplitude beneath each drop has a significant influence on the stability of the multi-droplet structures: the system seeks to minimize the mean wave amplitude beneath the drops at impact. Our work provides insight into the complex interactions and collective motions that arise in bouncing-droplet aggregates.more » « less
An official website of the United States government
